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Abstract 

Formulas to calculate variances and correlations o f  
the values of Fourier syntheses at individual points 
are derived for an arbitrary symmetry group when 
structure factors contain independent random errors. 
It is shown that variance at a given point in real space 
depends on the values the weighted Patterson func- 
tion takes at the points corresponding to Harker inter- 
atomic vectors. 

1. Introduction 

It rarely occurs in practice that one knows accurate 
values of structure factors F~ while calculating the 
Fourier synthesis 

pr--p(r)=(1/ lv  [) Y~ F, exp[-ETri(s , r ) ] ,  (1) 
SES 

where S is a set of points in the reciprocal-space 
lattice and V is the volume of the unit cell V. As a 
rule, information on the structure-factor phases q~s 
exists as distributions of probabilities P,(q~,), which 
means some uncertainty in the values of phases. The 
moduli of structure factors may also contain errors 
or even be wholly undetermined. In this situation Pr 
can take a spectrum of values. The situation may be 
modeled by a set {Pr}r~ V regarded as a random field 
defined by (1) with random {F,}~s. 

An estimate of Pr is usually its mean: 

(pr>--(1/ Iv l )  E (F~)exp[-2~r i (s , r ) ] .  (2) 
s E S  

Here angle brackets ( ) denote the mean of a random 
value. 

If structure-factor moduli IF°(s)[ are assumed to 
be accurate and phase values are characterized by 
the probability distributions P,(~Ps), then (2) is the 
'best' synthesis: 

( p r ) = ( 1 /  V)  Y. m ( s ) F ° ( s )  
s E S  

x exp [i~pbest(s)] exp [-27ri(s, r)], 

(Blow & Crick, 1959), in which 

m(s) exp[ itpbest(s)] = (exp (itp~)) 

2~" 

= ~ exp ( i~)P,(~)  d~. 
0 
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To estimate how close (pr) is to the real value of 
the synthesis at a given point r, the common practice 
is to calculate the root mean square deviation as 

O'r=((pr--(p,))2) '/2. 

This value may be interpreted as the level of noise in 
the synthesis (2) at point r. 

For the case where the values IF°(s)l are regarded 
2 as accurate, the value of or, averaged over the unit 

cell is known to be 

(1 / Iv l )  J o-, = dVr=(1/lvlY E [1-m2(s)]lF°(s)[= 
V s ~ S  

(Blundell & Johnson, 1979). 
The last equation gives an average estimate for the 

spread in pr values about the mean. In this paper we 
2 derive formulas to estimate the variance o" r at 

individual points for any crystallographic group. In 
a more general formulation, we derive expressions to 
calculate covariances 

COV (p , . ,  p, , )  = ((Pr-(Pr))(P,,-(P,,))), 

for the case when the coefficients F~ are independent  
random values, in the sense we define below. At u = r 

2 the latter expression gives the formula for O'r. 

2. Main results 

We have assumed that the values {Pr}r~ v are defined 
by (1) where {F,}s~s are complex valued and random. 
We now assume that the first and the second moments 
(mean and covariances) are known for each of the 
random values F,, so, in particular, the following 
values are known: 

A,=(IFf)-I(F~>I 2, 
(3) B~=(F2)-(F~) 2. 

If the function p(r) is real and has the symmetry 
of the group 

r={g,}~=l={(G~,t~)}~=,, 

such that 

p(r~)=p[g~(r)]=p(G,r+t,), v = l , . . . , n ,  (4) 
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then the structure factors Fs have the corresponding 
symmetry 

Fc~s=exp[-27ri(s,t,)]Fs, F-s = Is. (5) 

Here the overbar indicates complex conjunction. 
In particular, the values As and B~ have the sym- 

metry 
Ac~s= As, A-s = As, 

(6) 
Bc~s = exp [-27ri(s, 2t~)]Bs, B_, = Bs. 

For example, if p(r) has the symmetry group P212~2~, 
then the values As correspond to the symmetry group 
Pmmm, and the values Bs to the symmetry group 
P222. 

Equation (5) shows that the random values {Fs}s~s 
cannot be regarded as independent. We may, 
however, assume independence of random values 
{Fs}s~s~ with indexes s lying in the 'asymmetric part' 
of the set S; these are values without symmetry rela- 
tions. We define the 'asymmetric part' Sa of the set 
S to be a set of grid points of the reciprocal-space 
lattice such that: 

(a) each point s in S may be found from a point 
s' in Sa via one of the symmetry transforms of the 
type + G r; 

(b) these transforms, when applied to the points 
of Sa, do not yield points which are outside S; 

(c) no points in Sa have symmetry relations of the 
type +GS,  excepted for the identical transform. 

For a point s we introduce the multiplicity r(s) 
with respect to the group {+GS} in the form 

T ~'(s) is the number of points of the type ± G~s, 

(v = 1 , . . . ,  n) coinciding with s. (7) 

For example, for the P2,2~2~ group the asymmetric 
part may be given by h->0, k->0 and l->0. In this 
case r(s) = 2 ̀o where to is the number of zero indexes 
among h, k and I. 

Now we can formulate our main result. 

Theorem 1 
Assume the real function p(r) has the symmetry of 

crystallographic group F (4) and is given by (1) where 
{Fs}s~s~ are independent, complex valued and ran- 
dom, and the symmetry (5) is involved. Then for 
arbitrary points r and u 

CoV(pr, Pu) = P [ r - g , ( u ) ] +  E Q[r+g~(u)] ,  
K = I  K = I  

(8) 

where the functions P(r) and Q(r) are determined by 

P(r)=(1/Iv[) Y~ [r(s) vl]-'As 
s ~  S 

and 

x exp [-2~-i(s, r)], (9) 

Q(r)=(1 /v)  Z [r(s) VI]-tBs 
s E S  

x exp [-27ri(s, r)], (10) 

with the coefficients As, Bs and r(s) found by (3) and 
(7). 

Consequence. The mean square deviation of Pr can 
be given by 

cry= ~ P [ r - g , ( r ) ] +  ~ Q[r+gK(r)]. 
K = ,  ~ = 1  

Remark 1. The symmetry conditions (5) may either 
make some of the reflections vanish [Fs = 0 if for some 

r G . s  = s and (s, t .)  # 01moO1] or locate them symmetri- 
cally about the centre (if G T us = - s ,  then either ~s = 
q~°= ~r(s,t.), or ~s = q~°+ ~r). We assume that the 
relevant probability distributions for Fs meet these 
requirements. 

Theorem 2 
The variance averaged over the unit cell should be 

given by 

(1/[vl) ~ o-2 dV,=(1/]vl) 2 y~ As. (11) 
V s e S  

Remark 2. If the group F contains the transform 
g ~ ( r ) = - r ,  which means p(r) with the symmetry 
centre, it is easy to see that Fs and As =Bs = 
(F~)-(F~) 2 are real, and (8) has the form 

COV(pr, pu)=2 ~ P [ r - g . ( r ) ] .  
K = I  

3. Examples 
3.1. Analysis of Fourier'syntheses with undetermined 
phases 

In order that equations (9)-(10) have a more 
obvious sense, we want to examine a particular case. 
Assume that the structure-factor moduli F°(s) are 
accurate and that each of the phases ~0s may with 
equal probability be either ~o°(s)+A(s) or ~0°(s) - 
A(s). This example illustrates the use of the SIR 
method to determine phases in protein crystallogra- 
phy. It is easy to see that in this case 

(Pr)=(1/I V)  E cosA(s)IF°(s)I 
sE:S 

x exp [i¢°(s)] exp [-2~ri(s, r)], 

As = sin 2 A(s)lF°(s)[ 2, 

Bs= -s in  2 A(s) exp [i2~°(s)] F°(s)l 

and covariances can be determined by (8) with 

P ( r ) = ( 1 /  V) Y. [r(s) VI] -1 sin 2 A(s) F°(s) 2 
s E N  

x exp [-2zri(s, r)] = or(r) * cr(-r),  

Q(r) = -(r(r)  * (r(r) 

where 

~(r)=(1/Iv)  Y. [r(s)lvl]-'/21sin A(s)l F°(s)l 
s ~ S  

x exp [i~0°(s)] exp [-27ri(s, r)]. 
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In this way, P(r)  is the Patterson synthesis corre- 
sponding to the function tr(r). The function Q(r) is 
the self-convolution of o'(r). It is easy to see that 
functions (p,) and tr(r) bear a relation to the 'phase- 
error function' f ( r )  (Silva & Viterbo, 1980). To an 
accuracy of a multiplier, 

f ( r )  * p °(r)=(pr)+ io'(r), 
where 

p°(r)=(1/lVI) E IF°(s) 
seS 

x exp [ iq~ o (s)] exp [-27ri(s, r) ]. 

The function P(r)  may be assumed to be the weigh- 
ted Patterson synthesis in the more general case when 
the probability distributions Ps(q~,) are arbitrary. Then 

A , =  [ 1 - m2(s)]lF°(s)l 2. 
The function Q(r) is in this case more complex. 

3.3. Nonlinear filtration of a noisy synthesis 

In their papers Urzhumtsev (1985) and Wang 
(1985) suggested a method of bounding the region 
of a macromolecule in a noisy electron-density syn- 
thesis. The first step of the method is the search for 
'basic points', i.e. points which, with great certainty, 
can be ascribed to the region of the molecule 
(Urzhumtsev, Lunin & Luzyanina, 1989). In the 
simplest case the choice may follow from the com- 
parison of the synthesis value at such a point with a 
threshold. A more accurate procedure implies 
introducing a probability that every point in the space 
belongs to the region (Urzhumtsev, Lunin & 
Luzyanina, 1986). In this case not only the value of 
the synthesis at the point is required, but also the 
'level of noise', that is the spread in values about the 
mean. In the present paper we give formulas to calcu- 
late statistical characteristics of Fourier syntheses. 

3.2. Analysis of Patterson syntheses 

Now we want to describe a situation when the 
phases in (1) are accurate and the moduli are random. 
This is the case of the Patterson synthesis 

p ( r ) = ( 1 / V )  ~ F°(s)2exp[-2.xi(s,r)], (12) 
S ~  Sma x 

in which intensities I ° ( s ) =  ]F°(s)]  2 for some s have 
not been measured. In this case the unknown 
intensities I(s) may be regarded as random values 
falling under the Wilson statistics, so that for non- 
centrosymmetric reflections 

Ps(I)=(1/O) exp (-I/12), 

where ( I ) =  ~ (Srinivasan & Parthasarathy, 1976). 
The 'best' synthesis in this case will be 

Pbest(r)=(1/V[) ~ (Fs2 )exp[ -27 r i ( s , r ) ] ,  (13) 
s "<. Srnax 

with 

I I°(s) if the experimental value 

( F2 ) = I. 12 (s) of I° is known, 
if it is missing. 

Let us stress that for the unknown I°(s) the 'best' 
synthesis (13) involves the non-zero estimate 12(s). 
In particular, in the limit case with all I°(s) lacking, 
the 'best' Patterson synthesis consists of one central 
Gaussian peak only [if I2(s) is assumed to be 
Gaussian]. 

Variance for (12) is given by 

2 2 ~ (1/ V [ )  2 E As exp { -  27ri[s, r -  g~ (r)]} O" r 

K = 1 S "< Sma x 

where 

0 if I is known, 
As = ( i 2 ) _ ( I ) 2 =  f/2(s ) if not. 

4. Proofs 

4.1. Proof of theorem 1 

Let us transform the right-hand side of (1) to the 
sum over the asymmetric part of the set S. Here we 
take account of the symmetry (5) and of the fact that 
points + G 7- ~s include ~'(s) points coinciding with s. 
Then 

p.=(1/ VI) ~ ~ [~'(s)]-' 
v = l  s e S a  

x { FcTs exp [-27ri(G~s,  r)] 

+ F-o:s exp [ -27 r i ( -G~s ,  r)]} 

=(2/vl) Re {s~. [r(s)]-lFs 

x .=,~ exp [-27ri(s, G , r + t , ) ] }  

= ~ Re[Fs0s(r)] 
s e  S a  

where 

Os(r)=[r(s)lV ] -1 ~ exp {-2"rri[s, g~,(r)]}. 

Since the values {Fs}.~s,, are independent, 

c o v ( p ~ , p , ) =  Y. cov[Re 0s(r)Fs, Re 0s(u)Fs]. (14) 
s~ S a  

To calculate the sum (14), we use the following 
statement, which can easily be checked straight- 
forwardly: 

If z is complex valued and random, and 01 and 02 
are complex values, then 

cov(Re 01z, Re 02z)=½ Re{OI-~2A+OIO2B}, (15) 
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where 

A=(IzlZ>-I(z>l ~, n=(z=>-<z> ~. 

Since F is a group, we can write 

O~(r)O~(u)= ~ [r(s)V] -2 
/~,~'= 1 

× exp {-2  wi[s, g~(r) - g. (u)]} 

= 4It(s)  V ]-2 

x ~ exp (-2rri{s, g~(r)-g~[g~(u)]}) 
?-',K = 1 

= 4[r(s) V ]-2 

x ~ exp{-2rti[Gr~s,r-g,,(u)]} (16) 
v ,K=I  

and 

O~(r)Os(u)=4[r(s)lV[] -~ ~ expE-2rri(s, 2t~)] 
V ,K  = | 

xexp{27ri[Gr~s,r+g~(u)]}. (17) 

Then, using (14)-(17), we get the expression 

cov (m, pu)=.=,E (2 (l/[vl)2 Re ~s~ y" [l/r(s)]2A~ 

x ~ exp{-2rr i [  r G~s, r -  g~(u)]} 
~ = 1  

+(1 /  V )2 Re Y~ [1/r(s)]  2 
s ~  S a  

x ~ Bs exp [-2¢ri(s, 2t~)] 
~'=1 

x exp {-27ri[ G~rs, r+  g~ (r)]}). 

Now the symmetry (6) allows us to pass in the last 
equation to the summation over the whole set S so that 

2(1/ VI)2Re E (1 /T(S) )2As  
s ~  S a  

x ~ exp [ - 2 w i ( G  T ~s,r)] 
v = l  

=(l/Ivl) E ~ [ll~-(s)]{[~-(GSs)lvl]-' 
s ~ S a  v = l  

G~s, r)] + [r( - GYs)[ VI] -I x A ~  exp [-27ri( 7- 

x A _ ~  exp [-27ri(-G~rs, r)]} 

=(I / IV) Y. [~'(s)lV[]-~A~exp[-2~ri(s,r)] 
s ~ S  

= P(r). 

Analogously, 

2(l/]Vl)2Re Y~ [ l i t ( s ) ]  2 ~ n~ 
I E  S a  v = l  

G~s, r)] = Q(r) × exp [-27ri(s, 2t~)] exp [-2¢ri( 7" 

where P(r) and Q(r) are functions defined by (9) 
and (10). 

4.2. Proof of theorem 2 

Note that 

(llVl) ~ exp {-2~-i[s, r -  g~(r)]} dVr 
V 

=exp [27ri(s, t~)](1/ V) 

x ~ exp {-2¢ri[(E r - G~)s, r)]} dV, 
V 

f0 if G~s # s; 
/ exp [-2rri(s,  t~)] if G r v S = S .  

Since the condition 27r(s,t~)Y~0[mod2r r for G r ~ S = S  

gives zero reflections, then 

(1/Iv) I Y, P[r-g~(r)]dVr 
V v = l  

= ( l / I v )  2 E [llr(s)]As(ll V) 
$ES 

x J exp {-27ri[s, r -  g~(r)]} 
V 

=(1/Iv)  2 Y~ T+(s)/r(s) (18) 
s ~ S  

where T+(S) is the number of points G~rs coinciding 
with s. Analogously, 

(1/ V) ~ exp {-2~ri[s , r+g,(r)]}  dVr 
V 

J'0 if - G ~ s ~ s ;  

t exp [-21ri(s, t~)] if - G ~ s  = s. 

The condition - G ~s = s yields centrosymmetric struc- 
ture factors that may have phases with either ~s = 
~ ° = w ( s , t ~ )  or ~s= o + z r .  In this case Fs= 
t~ exp [i~°(s)] where t~ is a real random value and 

As=(t2)-(t~) 2, 

Bs= exp ( i2q~°){( t2)-(t~) 2} = exp (i2q~ °)A~. 

H e n c e ,  

(1/Ivl) $ E QEr+g~(r)]dVr 
V v = l  

= (1/I v[) ~ s~ s , ~ = ~  [ 1/r(s)]Bs exp (-  i2q~ °) 

=(1/Ivl) 2 E [r_(s)/z(s)]A~, (19) 
s ~ S  

where r_(s) is the number of points -G~rs coinciding 
with s. Since it is likely that r ( s )=  r_(s)+z+(s) ,  
expressions (18) and (19) yield (11). 
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5. Concluding remarks 

Ambiguity in some of the structure-factor values can, 
in its turn, lead to ambiguous values of the function 
of electron-density distribution calculated as the sum 
(1). In this case the most representative (i.e. giving 
the least r.m.s, error) is the 'mean'  synthesis (2) which 
is the general form of the best synthesis of Blow & 
Crick (1959). However, the possible deviation from 
the mean may vary for different points in the unit cell 
and is characterized by r.m.s, error Or. 

Formulas (8)-(10) estimate the individual values 
trr for the case when the errors in the structure factors 
are regarded as independent and their spread is 
known. [This spread is characterized by As and Bs in 
(3)]. The values trr are closely related to Harker peaks 
at weighted Patterson syntheses. The derived for- 
mulas may be used by various approaches where 
knowledge of individual values Pr is required. 

The author is grateful to O. M. Liguinchenko for 
her help in preparing the manuscript. 
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Abstract 

In experimental investigations and computer simula- 
tions of the structure and properties of grain boun- 
daries, the results are usually discussed with reference 
to the special case of coincidence boundaries, where 
the two neighbouring grains have a three-dimensional 
lattice of symmetry translations in common. For his- 
torical reasons this lattice is called the coincidence 
site lattice or CSL. A systematic determination of 
CSL's for the case of grains with a lattice of rhom- 
bohedral Bravais type is presented. It is shown that 
a number of investigations of the structure of grain 
boundaries in alumina (a-A1203) have to be reinter- 
preted in the light of the present results. A central 
result is the 2 - rhomb theorem, which expresses the 
ratio 2 of unit-cell volumes of the CSL and the 
rhombohedral  crystal lattice in terms of four integral 
parameters that describe the axis and angle of the 
rotation connecting the rhombohedral  lattices of the 
two neighbouring grains and in terms of their axial 
ratio c/a. Two types of coincidence rotations, i.e. of 
rotations generating CSL's, may be distinguished, viz 
common rotations, which generate CSL's with the 
same 2 for every value of c~ a, and specific rotations, 
which generate CSL's with a low value of 2 only for 
a few values of the axial ratio. The ,~-rhomb theorem 
makes it possible to determine systematically not only 

0108-7673/89/080505-19503.00 

all common rotations with 2 up to a given maximum 
value 2c but also all specific rotations with 2 -<  2c 
and with c/a in any given interval about the experi- 
mental value of c/a for the material in question. It 
is shown that the multiplicities of the CSL's generated 
by a given rotation in a hexagonal and in a rhombohe- 
dral lattice with the same value of c/a differ by at 
most a factor 3. 

I. Introduction 

Metals and ceramics are used in polycrystalline form 
for most of their applications. The boundaries 
between the crystallites often control mechanical and 
corrosion properties of the materials to a large extent. 
For this reason, great efforts are taken in the produc- 
tion and heat treatment of modern engineering 
materials to optimize the size of the grains and the 
impurity content of the boundaries between them as 
well as the distribution of additional phases. Sig- 
nificant improvements have been obtained in this 
way, e.g. in the toughness and strength of steels or in 
the tensile strength of ceramics. 

Boundaries between regions with the same crystal 
structure will be considered in the present work. They 
will be called grain boundaries and include the special 
case of twin boundaries. 
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